A Review of Scientific Data on Bycatch in FAD Tuna Fisheries

Thirtieth Session Rome, Italy

9-13 July 2012

The Biology of tuna at FADs

Thirtieth Session Rome, Italy

9-13 July 2012

ANALYSIS OF FINE SCALE BEHAVIOR – Arrival and departure times of yellowfin tuna at Hawaiian FADs

91 YFT 59 cm 52 YFT 63 cm 102 YFT 55 cm 104 YFT 58 cm 98 YFT 60 cm

Schooling Behavior (at R_FAD)

 \rightarrow 56 SKJ 53 cm 58 SKJ 58 cm

										10	11	11	12	12	13	14	14	15	19	20	21	21	21	22	22	23
	5 oct	5 oct	5 oct	6 oct	6 oct	6 oct	8 oct	8 oct	9 oct	oct	oct	oct	oct	oct	oct	oct	oct	oct	oct	oct	oct	oct	oct	oct	oct	oct
	am	pm	pm	am	am	pm	pm	pm	am	am	am	pm	am	am	pm	pm	pm	am	pm	am	am	pm	pm	am	am	pm
91	7:46																		20:12	2:27	10:59					
52	7:47												1:09	4:49							10:56	22:24	22:28			
102	7:53												0:41	4:48							10:52	20:04	21:20	1:24		18:19
104	7:48					12:27																				
98	7:48										10:40															
97	7:51					18:52																				
99		21:55											1:15	4:46							11:00	20:53	22:00	0:01	2:50	
56		22:09	22:17	2:08	3:20																					
58				4:15				22:20		5:41			0:38	5:06	17:47											
107	•						20:27	22:24	3:59				0:40	5:23		18:44	23:12	2:35								
113												19:22	0:57	4:44							10:56					
106		20:50			5:50	20:07																	18:22			

Time of Arrival

Time of Departure

Oahu FADs (13)

Why fish around FADs?

Reduces search time

• Fewer 'skunk' sets

Impacts on tuna stocks

Thirtieth Session Rome, Italy

9-13 July 2012

Impacts on Tuna Stocks

Note: Current statistics do not make it possible to distinguish catches made with anchored FADs, drifting FADs or natural logs The term "floating objects" is used.

The targets of tropical purse seiners

Relative to all purse seining, floating object sets existed from the onset

Relative to all fishing methods, catch on floating object sets has been growing

Global skipjack catch is growing faster on object sets

Annual growth in FAD usage perhaps 2.5%/year

Global skipjack catch (t)

- 1. Loss of potential yield (by catching small fish that have the potential to grow to a much larger size if they survive)
- 2. Reduction of spawning biomass or stock size (by catching too many fish, either adults or juveniles)

Loss of potential yield

Floating object sets tend to catch smaller tunas (yellowfin and bigeye)

Set Type	% under 5 Kg
Dolphin	9%
Free School	49 %
P&L	59 %
Object	85%

Loss of potential yield

MSY for E.P.O. bigeye has decreased, coinciding with increased catch on objects

The relative mix of fishing gears has allocation implications

Overfishing

- All sources of fishing mortality reduce spawning biomass, either today or later.
- A stock can be overfished by taking too many juveniles or too many adults, or both.
- All sources of fishing mortality need to be monitored and managed.
Overfishing

Species	Ocean	%object	F/Fmsy	B/Bmsy
BET	EPO	70	1.05	1.12
SKJ	EPO	64	1	>1
SKJ	AO-E	62	<1	>1
SJK	WCPO	56	0.37	2.94
BET	WCPO	38	1.46	1.19
YFT	WCPO	36	0.77	1.47
SKJ	10	31	<1	2.56
BET	AO	21	0.95	1.01
BET	10	20	<1	1
YFT	EPO	17	0.87	1
YFT	10	17	0.84	1.61
YFT	AO	13	0.86	0.96
SKJ	AO-W	9	<1	>1

Impacts on non target species

Thirtieth Session Rome, Italy

9-13 July 2012

Bycatch rates: Comparison of tuna fisheries Kelleher (2005, FAO)

Bycatch of purse seiners (excluding discards of SKJ, YFT, BET) estimated from scientific observers onboard

Other Tuna & Finfish (80-95% of PS bycatch) Fast growing, highly fertile and characterized by a high natural mortality rate → No particular ecological concern But monitoring is necessary

Sharks (2 to 17% of PS bycatch)

Silky shark (Carcharhinus falciformis)

Oceanic white tip (Carcharhinus longimanus)

Around 90% of sharks caught on FADs

Slow growth, late maturation, low fecundity, and long reproductive cycles, they are amongst the least resilient of fish species to intense exploitation

Sharks (Gilman 2010)

Longline	Purse seine
Some fisheries target sharks	Pacific (1992-98): an order of magnitude lower than longline
Western and Central Pacific (mid 1990's – mid 2000's) 102 000 tons	Western and Central Pacific (mid 1990's – mid 2000's) 2 000 tons

Turtles (Gilman 2010)

Longline

10 000's to 100 000's caught each year in each ocean

Purse seine

5-200 caught per year per ocean, 95% released alive

But some turtles entangled in netting under FADs

Impacts on habitats and ecological consequences

Thirtieth Session Rome, Italy

9-13 July 2012

Logs have always been natural components of the « surface » habitat of tuna

Deployment of FADs: How much do FADs change the « surface » habitat?

Quantifying the changes due to the deployment of FADs

- No new « floating object » area at the scale of 5°x5° quadrats
- Threshold: 2°x2° quadrats

Quantifying the changes due to the deployment of FADs

 Major changes are quantitative (increase of numbers of floating objects):
multiplication factor
20 or 40 (2008) What could be the effects of these changes? The hypothesis of the Ecological trap

Behavioural impacts

Biological impacts

In favor

- Kleiber & Hampton (1994)
- Marsac et al. (2000)
- Hallier & Gaertner (2008)
- Jaquemet et al. (2010)

Against

- Kleiber & Hampton (1994)
- Dagorn et al. (2007)
- Stehfest & Dagorn (2010)
- Schaefer & Fuller (2010)
- Robert et al. (submitted)

There are still only a few solid empirical examples of ecological traps in the published literature (Robertson & Hutton 2006).

Need for reference points, in order to assess the changes in behavior and biology due to the use of FADs

Management needs

Thirtieth Session Rome, Italy

9-13 July 2012

Monitoring the number of FADs and electronic buoys

FADs are a major part of the fishing effort

They must be monitored and managed like any other type of fishing effort

Reducing the fishing mortality of small bigeye and yellowfin tuna

Two main measures used by RFMOs:

- Moratorium of FAD fishing / full time-area closures
- Retention of all tunas of all sizes

Other options:

- Limiting the number of sets on floating objects
- Limiting the number of electronic buoys attached to floating objects
- Economic incentives

Monitor biological and behavioral indices

Collect time-series of:

- 1. Adult survival, reproductive success
- 2. Condition indices of tuna in various areas
- 3. Residence times of tuna at FADs
- 4. School sizes

Reducing the fishery-induced mortality of by-catch

Non Entangling FADs to avoid ghost fishing

Reducing the fishery-induced mortality of by-catch

Avoid small sets: by not catching tuna schools less than 10 tons, it could reduce bycatch by 25% and would affect tuna catch by 3% only

<u>Release sharks alive</u>: this could save up to 10-20% of sharks

New escape panel for sharks and other bycatch (see recent ISSF cruise)

Future of FADs?

There is a route towards the sustainable use of FADs IF all stakeholders consider FADs like any fishing gear that must be monitored and managed with appropriate measures

